## Assessment of Nitrous Oxide emissions in California Cropping Systems



## In this talk

- California's Climate Change Act AB 32
  - Background on N<sub>2</sub>O emissions
- CARB and CalRecycle projects
  - ASSESSMENT OF BASELINE NITROUS OXIDE EMISSIONS IN CA CROPPING SYSTEM (Completed)
  - RESEARCH TO EVALUATE NITROUS OXIDE EMISSIONS FROM COMPOST IN SUPPORT OF AB 32 SCOPING PLAN COMPOSTING MEASURE (Ongoing)
- Perspective/conclusions

## **Objectives**

- Achieve goals of AB32 (Global Warming Solutions Act):
  - CA agricultural land: 52% of total N<sub>2</sub>O (ARB 2010)
  - 4% of CA total GHG emissions (CEC, 2005)
- Baseline N<sub>2</sub>O emissions
- Emission factors
- Data for model calibration and validation
- Best management practices and mitigation potential



## Pathways for N<sub>2</sub>O emission



†: this process only carried out by one autotrophic nitrifier-Nitrosomonas sp



## Controls on $N_2O$ Emissions from Agricultural Soil



Environmental Quality . Landscape Processes



#### **Baseline N<sub>2</sub>O Emissions in CA Cropping Systems**

- Tomato, lettuce, wheat, alfalfa
- Emphasis on N fertilizer rates
- Relationships among N<sub>2</sub>O emissions, yields, crop N use efficiency (crop N uptake and N removal)
- 2-year trials to determine annual N<sub>2</sub>O emissions and emission factors

## Methodology: Chambers for N<sub>2</sub>O flux measurements in the field



## N<sub>2</sub>O emissions are event based





# **Tomato** Department of LAND, AIR AND WATER RESOURCES University of California, Davis Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processes

## **Processing Tomatoes: Annual N<sub>2</sub>O Emissions Fertilizer Rate & Irrigation Effects**





- Crop N off-take: 150 to 230 kg N ha<sup>-1</sup>
- Maximum yield at about 162 kg N ha<sup>-1</sup>

SDI=Subsurface drip



## Timing of N<sub>2</sub>O emission from different fertilizer events in the N rate trails Tomato



## Annual N<sub>2</sub>O Emissions in Tomato as a function of cover crops and irrigation practice











## Seasonal Distribution of N<sub>2</sub>O Emissions: Effect of cover crops and irrigation practice



SDI=Subsurface drip irrigation Std= No cover crop Trit=Triticale Mixed=Legume/grass



Sources of total greenhouse gas emissions in tomatoes as a function of cover crops and irrigation practice



Statistical significance

SDI=Subsurface drip irrigation Fallow= No cover crop Trit=Triticale Mixed=Legume/grass



# Lettuce Department of LAND, AIR AND WATER RESOURCES University of California, Davis Climate Change \* Sustainable Agriculture Environmental Quality \* Landscape Processes

## N<sub>2</sub>O Flux in Response to N Fertilizer Rates at Experiment Site (Hartnell College)



- 5 N fertilizer rates (n=4)
- Subsurface drip irrigation
- -2-year study:
  - One crop / year
     followed by year-round
     N<sub>2</sub>O monitoring

#### **Lettuce Yields & Crop N Removal**





#### **Crop N off-take:**

| kgN/ha |       |  |  |
|--------|-------|--|--|
| 11     | 98.5  |  |  |
| 85     | 114.8 |  |  |
| 170    | 136.2 |  |  |
| 255    | 148.8 |  |  |
| 340    | 159.1 |  |  |



| <u>kgN/ha</u> |       |  |  |
|---------------|-------|--|--|
| 11            | 60.4  |  |  |
| 85            | 91.9  |  |  |
| 170           | 109.8 |  |  |
| 255           | 118.4 |  |  |
| 340           | 118.9 |  |  |



#### **Lettuce: Annual N<sub>2</sub>O Emissions**





**Grower Field:** 1.7 (0.4) kg  $N_2O-N$  ha<sup>-1</sup> crop<sup>-1</sup>



## Lettuce: N<sub>2</sub>O emission by season under surface-drip irrigation



N<sub>2</sub>O emissions increased linearly with increasing N rates



## N<sub>2</sub>O Emissions at Commercial Lettuce Farms



## N<sub>2</sub>O Fluxes across 6 farms using typical fertilization and irrigation practices



On-farm
emission higher
than
experimental site
but still low
considering the
amount of
fertilizer N added



#### **On-farm Lettuce Yields**

## **On-farm:**

### Yield of low N-rate as % of high N-rate yield

| Farm A | 97    |                |
|--------|-------|----------------|
| Farm B | 92    |                |
| Farm C | 106   | Maximum yield  |
| Farm D | 101   | achieved with  |
| Farm E | 91    | 50% of typical |
| Farm F | 104   | • •            |
|        | _ • • | N application  |
| Mean   | 98.5  | rate           |



#### **Annual Emission Factors for tomato and lettuce**

| Lettuce<br>(one crop) |      |      |      |      |
|-----------------------|------|------|------|------|
| kg N ha <sup>-1</sup> | 85   | 170  | 225  | 340  |
| 2009/10               | .83  | .41  | .44  | .40  |
| 2010/11               | .76  | .46  | .41  | .31  |
|                       |      |      |      |      |
| <b>Tomato</b>         |      |      |      |      |
| kg N ha <sup>-1</sup> | 75   | 162  | 225  | 300  |
| 2009/10               | 1.75 | .91  | 1.35 | 1.51 |
| 2010/11               | 2.45 | 1.34 | 2.58 | 1.79 |





## Wheat N<sub>2</sub>O emissions under different fertilizer sources and N rates



Higher N<sub>2</sub>O emissions with anhydrous ammonia than ammonium sulfate fertilizer



#### **Annual Emission Factors for Wheat**

| Wheat                 |            |              |             |             |              |
|-----------------------|------------|--------------|-------------|-------------|--------------|
| kg N ha-1             | 91<br>AS&U | 151<br>AS& U | 205<br>AA&U |             | 254<br>AS&U  |
| 2009/10               | .35        | .48          | .63         |             | .20          |
| kg N ha <sup>-1</sup> |            |              |             | 205<br>AS&U | 266 AS&<br>U |
| 2010/11               |            | .35          | .71         | .48         | .63          |



### Alfalfa Systems N<sub>2</sub>O Emissions



| may dulle daily                         | , Aug IVI                     | lay Julie July | Aug |
|-----------------------------------------|-------------------------------|----------------|-----|
| Annual emissions (kg N <sub>2</sub> O-1 | N ha <sup>-1</sup> ):         |                |     |
| 4.42 (0.76)                             |                               | 2.46 (0.33)    |     |
| off-season: 9.4 (2.1)%                  |                               | 11.8 (3.2)%    |     |
| Crop N off-take:                        | 500-600 kg N ha <sup>-1</sup> |                |     |



### Wheat after Alfalfa

| N<br>application<br>(kg N ha <sup>-1</sup> ) | Grain N content (%) | Crop N<br>removal (kg N<br>ha <sup>-1</sup> ) |  |
|----------------------------------------------|---------------------|-----------------------------------------------|--|
| 0                                            | 1.6 b               | 147 c                                         |  |
| 154                                          | 1.9 a               | 194 b                                         |  |
| 210 (AS+U)                                   | 2.1 a               | 202 ab                                        |  |
| 266                                          | 2.1 a               | 220 ab                                        |  |
| 210 (AA+U)                                   | 2.1 a               | 233 a                                         |  |
| ANOVA                                        | P<0.05              | P<0.05                                        |  |

- No yield response to different N rates
- Grain N content not different among N application treatments
- Apparent crop N removal close to 100%
- N credit due to the preceding alfalfa crop

## Measuring Greenhouse Gas Flux from Green Compost Windrows



## Objective

- Measure greenhouse gas (GHG) flux from compost windrows
  - Methane
  - Nitrous oxide
- Use Chamber and Eddy Current techniques
- Laboratory incubations to characterize the effect of compost on N<sub>2</sub>O emission on a range of agricultural soils
- Determine effect of field application of compost on N<sub>2</sub>O emissions

## Comparison of chamber vs. eddy current methods

### **Eddy Current method**

| Period n |     | CH <sub>4</sub> Flux [mg m <sup>-2</sup> s <sup>-1</sup> ] |        | N <sub>2</sub> O Flux [µg m <sup>-2</sup> s <sup>-1</sup> ] |        | CO <sub>2</sub> Flux [mg m <sup>-2</sup> s <sup>-1</sup> ] |        |
|----------|-----|------------------------------------------------------------|--------|-------------------------------------------------------------|--------|------------------------------------------------------------|--------|
|          |     | Trapezoidal                                                | Spline | Trapezoidal                                                 | Spline | Trapezoidal                                                | Spline |
| Α        | 45  | 0.315                                                      | 0.528  | 2.57                                                        | 6.58   | 23.6                                                       | 46.1   |
| В        | 133 | 0.134                                                      | 0.240  | -3.81                                                       | 3.60   | 23.6                                                       | 44.1   |
| С        | 160 | 0.150                                                      | 0.236  | 0.60                                                        | 2.65   | 19.8                                                       | 32.1   |
| D        | 85  | 0.041                                                      | 0.077  | 1.86                                                        | 5.00   | 11.0                                                       | 21.1   |
| E        | 113 | 0.083                                                      | 0.185  | 6.36                                                        | 8.57   | 31.5                                                       | 60.9   |
| ALL      | 536 | 0.128                                                      | 0.226  | 1.09                                                        | 4.83   | 22.1                                                       | 40.6   |

#### **Chamber Method**

Methods compare well

| Period | n (days) | CH <sub>4</sub> flux<br>[mg m <sup>-2</sup> s <sup>-1</sup> ] | NO <sub>2</sub> flux<br>[μg m <sup>-2</sup> s <sup>-1</sup> ] | CO <sub>2</sub> flux<br>[mg m <sup>-2</sup> s <sup>-1</sup> ] |
|--------|----------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| A      | 1        | 0.146                                                         | 1.364                                                         | 24.601                                                        |
| В      | 8 (6)    | 0.218                                                         | 3.332                                                         | 37.519                                                        |
| C      | 1        | 0.471                                                         | 1.299                                                         | 71.712                                                        |
| D      | 2(1)     | 0.046                                                         | 3.181                                                         | 39.714                                                        |
| Е      | 2(1)     | 0.037                                                         | 6.012                                                         | 36.389                                                        |
| ALL    | 14       | 0.181                                                         | 3.408                                                         | 39.191                                                        |



## Laboratory Incubation showing the influence of compost on $N_2O$ emission from a range of agricultural soils with



• Generally little influence of compost on N<sub>2</sub>O emission both under lab and field conditions



## **Summary & Conclusions**

- $N_2O$  emissions generally increase with increasing N fertilizer additions
- Emission factors are crop specific (no general value)
- Subsurface drip reduces  $N_2O$  emission compared to furrow irrigation
- Subsurface drip significantly reduces the cover crop effect during the growing season
- The carbon equivalents representing  $N_2O$  emissions from soil N and fertilizer N application is less than 30 to 50% of total farming fuel requirements and fertilizer N production
- Understanding  $N_2O$  production pathways will likely provide better insight into practices to reduce emission



## **Future and Ongoing Studies**

- ASSESSMENT OF BASLINE NITROUS OXIDE EMISSIONS IN CA DAIRY SYSTEMS (Ongoing)
- DETERMINING  $NO_X$  EMISSIONS FROM SOIL IN CA CROPPING SYSTEMS TO IMPROVE OZONE MODELING (Ongoing)
- Determine agronomic practices to reduce GHG emission (Ongoing)
- Mechanistic studies on pathways for  $N_2O$  production

